منابع مشابه
Laminar Flow Analysis in the Channel Bends
In this paper the laminar flow in the rectangular channel bends is simulated using numerical techniques. The turning angle of the channel bend and the area ratio of the channel cross-section are two important parameters to be examined. For flow simulation, the body fitted 3-D continuity and momentum equations are used and a body fitted general purpose code is developed. The existing results of ...
متن کاملLaminar Flow Analysis in the Channel Bends
In this paper the laminar flow in the rectangular channel bends is simulated using numerical techniques. The turning angle of the channel bend and the area ratio of the channel cross-section are two important parameters to be examined. For flow simulation, the body fitted 3-D continuity and momentum equations are used and a body fitted general purpose code is developed. The existing results of ...
متن کاملlaminar flow in annular conduits
the flow of fluids in annular conduits has been studied for over sixty years, however the resulted data are very scattered. in this paper the problem is analytically solved, starting out with navier-stokes equations. a computer solution is used to determine the shape of velocity profiles, the discharge and the friction factor in a large number of concentric and eccentric annular conduits. the e...
متن کاملNumerical simulation of nanofluid flow over diamond-shaped elements in tandem in laminar and turbulent flow
In this paper, the Al2O3-water nanofluid flow in laminar and turbulent flows inside tubes fitted with diamond-shaped turbulators is numerically modeled. The nanofluid flow is modeled by employing a two-phase mixture method and applying the constant heat flux boundary condition at tube walls. In the results, the effects of different parameters such as the geometry of turbulators, volume fraction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physiology
سال: 1954
ISSN: 0022-3751
DOI: 10.1113/jphysiol.1954.sp005135